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Abstract— To resolve various difficult problems
encountered in  modern technologies, multi-objective
evolutionary algorithms (MOEAs) have been studied

aggressively in these decades. Since they can reveal a clear
trade-off relation among the conflicting objectives effectively,
they are available for multi-objective optimization problem
(MOP). To expand such availability more in advance, we
previously proposed a novel idea for solving single-objective
optimization problem (SOP) using MOEA and applied it to
some methods by using scalarization in MOP (scalarized MOP,
hereinafter). Actually, such idea was studied in terms of
MOEA such as NSGA-II alone. Hence to find out more
effective methods, this paper will first compare the
performance with other popular MOEAs. Then, regarding the
best method (NSGA-II, after all), we reveal a special property
of the individual solution in population and develop a new idea
on a basis of non-Pareto optimal (best performance)
dominance to enhance the solution ability. In numerical
experiments, first, we have compared the solution ability
among NSGA-II, MODE and MOPSO through a set of
benchmarks. Then, in terms of NSGA-II as the best method,
scalarized MOPs have been solved to examine the merit of the
new idea. They are four bi-objective mechanical design
problems and a real-world car structure design. Moreover, the
significance of the post-optimal evolution is emphasized
especially for the scalarized MOPs. Through those
demonstrations, we claim the proposed framework can provide
a practical procedure for rational decision making through
SOP and/or MOP. discuss some prospects towards the scalable
cost accounting.

Keywords— Optimization, Multi-Objective Evolutionary
Algorithm, NSGA-II, Post-Optimal Evolution, scalarized Multi-
Objective Optimization Problem

I. INTRODUCTION

To resolve various difficult problems encountered in
modern technologies, various optimization methods have
been applied successfully in many years. Particularly, in a
field known as multi-objective optimization, multi-objective
evolutionary algorithms (MOEAs) have been studied
aggressively in these decades. Since they are viewed as
practical methods and can reveal a clear trade-off relation
among the conflicting objectives (multi-objective analysis
[1]) they are available for multi-objective optimization
problem (MOP) that aims at obtaining a unique solution
known as preferentially optimal solution. To expand such
availability of MOEAs more in advance, we previously
proposed a novel idea for solving single-objective
optimization problem (SOP) using MOEA [2] and applied it
to the real world optimization problem [3].
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Actually, such idea was studied in terms of MOEA such
as NSGA-II alone. Hence to find out more effective methods,
this paper will compare the previous performance with other
popular MOEAs such as MODE (Multi-Objective
Differential Evolution) and MOPSO (Multi-Objective
Particle Swarm Optimization). In addition, after revealing a
special property of individual solution in population, we will
develop a new idea to enhance the solution ability for the
best method (NSGA-II, after all). Actually, it relies on a
basis of non-Pareto optimal (best performance) dominance in
the foregoing framework.

To compare the solution ability among MOEASs, in
numerical experiments, we will solve a set of benchmark
problems. Then, in terms of NSGA-II as the best method,
scalarized MOPs have been solved to examine the enhanced
merit of the new idea. First, four bi-objective mechanical
design problems are concerned by the stiff value function
methods (weighing and e-constraint) and commercial solver
LINGO [URL-1]. Then a real-world car structure design
problem is solved by an adaptive approach termed MOON?
(Multi-Objective Optimizer using value function modelled
by Neural Network) [4].

Moreover, we engage in the post-optimal evolution that
is to be done for re-evaluating the prior optimization result
before the final decision. Here, we emphasize its significance
especially for the scalarized MOPs since they usually involve
uncertain parameters referring to subjective preference of
decision maker (DM).

The rest of this paper is organized as follows. In Section
2, problem statement is described clearly. Section 3 explains
about the old and new ideas. In Section 4, examining
solution ability through comparison with other MOEAs, we
move on the bi-objective engineering design problems. Then,
significance of the post-optimal evolution is discussed
demonstratively. Some conclusions are given in Section 5.

Il. PROBLEM STATEMENTS
In general, SOP is formulated as [Problem 1].
[Problem 1] min f (x) subjectto x € X

where x denotes a decision variable vector, X a feasible
region and f a scalar objective function.

Though many mathematical programming methods have
been traditionally applied, in modern optimization, they are
likely replaced with meta-heuristic methods. This is because
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the latters can practically cope with various simulation
models and expect to obtain a global solution without rigid
mathematical conditions even for complicated problems.

Meanwhile, MOP is formulated as follows.
[Problem 2] min F(x) = {fi(x), f2(x), ... fn(X)}
subjecttox € X

where F denotes a vector objective function some elements
of which conflict with one another. The aim of MOP is to
obtain a unique preferentially optimal solution relaying on
the DM’s preference.

As a widely used approach for MOP, certain scalarized
methods have been utilized traditionally to many applications
due to their simplicities [5]. The basic idea is to transform
appropriately the original MOP into SOP. As its popular
form, weighting method is formulated as follows.

[Problem 3] min f(x) = 2™ w; fi(x) subject to x € X
Another one known as ¢ -constraint method is given by
[Problem 4] min f(x) = fi(x)

subject to fj(x) = fiop + &, Vj#Fiandx € X

where w; denotes the weighting coefficient representing the
relative importance of i-th objective and & the upper bound
compromise from the optimal value f;.op: for j-th objective.

Though those formulations are understandable, there
exist no ways to decide such preference parameters like
weights and e¢values beforehand correctly. That is an
inherent weakness of those approaches. Hence, we call those
stiff methods.

To overcome such stiffness, we proposed an adaptive
scalarized method named MOON?Z. It tries to identify the
value function of DM through a suitable artificial neural
network (NN) beforehand. Such NN will be trained using the
training data gathered from DM by the AHP-like pair-wise
comparisons on his/her preference. Through such elaborate
assessment on the value system, we can transform the
original MOP into SOP as follows.

[Problem 5] max Vnn(F(X)) subject to x € X

Here, noting the specific uncertain properties still
embedded in MOP, we should note the importance of the
post-optimal evolution pointed out already. For this purpose,
we can apply the elite induced multi-objective evolutionary
algorithm (EI-MOEA [6]) as follows.

(1) Select some elite solutions around the prior solution.

(2) Apply MOEA by incorporating the elite solutions into a
set of random initial solutions.

I1l. ENHANCEMENTS TO SOLVE SOP BY MOEA
Previously, we noted the following propositions.
Proposition 1: Objectives min f(x) and max f(x) always
conflict with each other.

Proposition 2: “[Problem 6] min {f(x), — f(x)} subject to
X € X” is viewed as a bi-objective problem (minus
formulation).

Then, due to Proposition 2, we proposed a unique
procedure to solve SOP or scalarized MOP by MOEA as
follows (hereinafter, our approach).

(1) Apply a certain MOEA for the above [Problem 6].

(2) Select the solution with the minimum value of f(x) as the
optimal solution for the original [Problem 1].

Regarding the approaches associated with this topic, a
few ideas are proposed for the constrained SOP. The first one
[7] proposed a scheme that transforms the original problem
into an unconstrained bi-objective problem by considering a
measure of the constraint violations as the second objective.
Another one [8] tries to transform the problem into an
unconstrained MOP having the original objective function
and every constraint as separate objectives. In this case, the
constrained SOP is converted into a MOP with N objectives
when the number of constraints is N — 1.

It should be noted, in these approaches, trade-off is to be
considered between the optimality and the feasibility. Hence,
it becomes quite hard to derive some promising feasible
solutions efficiently if any particular operations would not be
introduced in the algorithm. Accordingly, we cannot directly
apply any conventional MOEAs to solve the problem.
Moreover, the second approach refers likely to many-
objective problem that becomes more difficult to solve since
numbers of constraint are large for practical real world
applications.

Against these defects, our above idea can cope both with
the unconstrained and constrained SOP by just applying the
usual MOEA. In other words, we can solve the original SOP
even if we do not have any EA and mathematical
programming solvers or certain knowledge about their usage.

By the way, it is unnecessary to derive a widely spread
distribution of Pareto front in our dealing. It is enough to
obtain only several solutions. This is also true for the post-
optimal evolution carried out after that. To note these facts,
we modified the algorithm of NSGA-II [9] so that the
population size will decrease along with the generation.
Pseudo code of such algorithm called down-sizing NSGA-II
is given as follows.

if(gen >a x gener)

{ popsize = 8 x popsize;
if(popsize < minpop) popsize = minpop; }

where a and f are positive parameters (<1). And gen, gener,
popsize and minpop represent current generation, its total one,
population size and desired final size, respectively.

Since we deployed those ideas and examined their effects
only for NSGA-II, it is meaningful to compare the
performance with the other popular MOEAs like MODE and
MOPSO before considering enhancement. Then, for the best
match of our idea among those, we try to enhance the
algorithm by introducing a simple operation in terms of the
following property,.

Proposition 3: Rank of every individual is always 1
when solving the unconstrained problem of [Problem 6].
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From this, for unconstrained problems, it becomes
redundant to compute the rank every time. Moreover, we can
avoid such a risk that the individuals having smaller
objective value f(x) are not selected if usual Pareto optimum
dominance would be applied. This is because when the
ranking is tie, the selection is to be done in terms of another
basis such as crowding distance. Hence, it is better to adopt a
non-Pareto optimum dominance to enhance the solution
ability in the present case. What we call here the best
performance dominance (BPD) is defined as follows:

Individual x' dominates X! if f(x') < f(x)

As a matter of fact, the above proposition is not satisfied
for the constrained problems that are obeyed by the
constrained dominance that is defined as follows.

Individual x' dominates X/,
(1) if X' is feasible while j infeasible

(2) if x" has smaller vioration amount than x! when both are
infeasible

(3) due to the Pareto optimum dominance when both are
feasible

In this case, we can apply BPD only for the above Case
(3). Hence, though the rank of every individual is always 1 in
unconstrained problems, there are several ranks during the
evolution in constrained ones. Moreover, as a subsidary
effect, computational effort is saved by this BPD in any case.

As a summary of this section, we repeat the significance
of the proposed idea as follows. Just by an appropriate
MOEA, we can cope with a variety of interests in
engineering optimization regardless whether it is given as
SOP or MORP. In this line, the proposed idea is promising to
expand the availability and performance of MOEA greatly.

TABLE I. COMPARISON AMONG MOEAS USING BENCHMARKS
Benchmark MODE MOPSO NSGA-I11
Shekel's fox hole: 128.394 & 54.3947 0.998003

fopt = 0.998004 0% (0) > 68% (21) 100% (31)
Schwefel: 326.482 84.6800 34.3863

fopt =0.0 0% (0) 0% (0) 71% (22)

De Jong: 3909.47 3905.96 3905.93

fopt = 3905.93 100% (31) 100% (31) 100% (31)
Goldstein & Price: 81.8914 4.20729 3.00706
fopt = 3.0 0% (0) 6% (2) 97% (30)
Branin: 2.86889 0.414448 0.474839

fopt = 0.397727 0% (0) 32% (10) 97% (30)
Martin & Gaddy: 0.702028 2.95844E-3 5.63677E-5
fopt = 0.0 0% (0) 84% (26) 100% (31)
Rosenbrock: 3.54863 0.0321421 7.99531E-3
fopt = 0.0 0% (0) 23% (7) 68% (21)
4D-Rosenbrock: 83.8490 3.62872 1.18818
fopt = 0.0 0% (0) 0% (0) 3% (1)
Hyper sphere: 18.6844 0.930556 7.59519 E-4
fopt = 0.0 0% (0) 0% (0) 100% (31)
Griewangk: 0.936496 0.0127924 0.0107789
fopt = 0.0 0% (0) 23% (7) 32% (10)
Total score 10% (31) 34% (104) 77% (238)

& Objective value averaged over 31 trials,

b- 95 (Success#), where Success# = +1 if ([fopt - f(X)] < 0.01%(1.0 + | fopt ) )

IV. NUMERICAL EXPERIMENT

A. Comparison among MOEAs

Previously, to evaluate the solution ability, we solved ten
benchmark problems many of which have multiple peaks of
objective functions. Actually, we applied our idea in terms of
NSGA-II and compared its performance to several methods,
i.e., adirect search known as N-M (Nelder & Mead) and four
evolutionary methods such as DE (Differentially Evolution),
PSO (Particle Swarm Optimization), GA (Genetic
Algorithm) and SA (Simulated Annealing). Then, we
revealed the total performance of our procedure is third place
a bit behind DE and PSO but satisfactory as a global solver
even for SOP.

Here, to find more effective methods, we compare the
foregoing performance with the other MOEAs such as
MODE and MOPSO. For this purpose, we used the codes
named nsga2, MOPSOCD [10] in the R library and
transformed R code from MODE.m in Matlab [URL-2]
under the default parameter settings. MOPSOCD uses
crowding distance computation to ensure even spread of non-
dominated solutions while MODE applies the greedy
selection using a dominance relation.

Every problem was solved 31 independent runs with
different random seeds under the conditions for the
population size (popsz#) and the generation time (gener#) as
follows: popsz# = min (10D, 60) and gener# =
min(100*popsz®’, 2000), respectively. Here, D denotes the
dimension of decision variables. In Table 1, those results are
summarized regarding the average objective value and
Success# defined below the table. We know MODE did not
go well with our approach at all and MOPSOCD did not so
well. Since NSGA-II is known to be the best match, we
continue to use this method for the following evaluations.

B. Effect of Enhancements for Constrained Problems

1) Engineering problems

In this section, we turn our attention to examine the
efficiency and applicability of our approach (refer to
Propositions 2 & 3) in terms of the four engineering
problems studied elsewhere (Refer to Ref.[11] more in
detail,). They are all bi-objective constrained minimization
problems. Actually, we solved those as the stiff scalarized
problems given by [Problem 3] and [Problem 4] under the
"minus" formulation. This time, we used the open C code of
NSGA-II developed by Deb [URL-3] with the parameter
settings such as crossover probability and distribution index:
0.75 & 10, respectively and mutation probability and
distribution index: 0.2 & 50, respectively. On the other hand,
population size and generation number are set as popsz#
=10D and gener# =10popsz#, respectively

The first problem formulated below is a two-bar truss
design problem minimizing total volume of bars and stress
on bar AC subject to three constraints on stress and volume
with respect to the variables (x1 — x3) as shown in Fig.1 (a).
Here, two kinds of stiff scalarized problem were solved with
weights of (0.5, 0.5) and under e-constraint like f(x) = 0.2,
respectively.
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min {f,(x) = O.lel\/x?f +16 + xz\/xg +1,

f,(X) = 0.2y X2 +16 /(X,Xq)}
subject to
1-f,(x)=0
1- f,(x)=0
1-0.8y/%Z +1/(Xy%3) >0
0<x,X%,<20, 1<x3<3

4[m] }&b

X, |¥3
af = |

l 100 [KN]

Fig. 1. (a) Scheme of two-bar truss problem

The second problem formulated below is to minimize
cost and end deflection for a welded beam subject to four
constraints on shear stress, bending stress and buckling load.
Meanwhile, variables (x1 — x4) are lengths as shown in Fig.1
(b). In this case, weights are (0.00025, 0.99975) and &-
constraint is f1(x) = 10, respectively.

min{f,(x)=1.105x, X +0.048 X, X;(14 + X,),

f,(X)=2.1952/ (X3 x3)}

subject to
r=\r2+ x IR+ < 30000
0 =5.04-10 / (x2 x3) <13600
X3 = X4
6.4746 - 10 (1-0.3x,) X,X3 > 6000
0.1<x;, X, <10, 0.125< %5, X, <5

where
7'=6000/ (\/Exl X4), 7"=6000(14 +0.5%;)R/J
R= \/0.25{x12 + (X +%4)° },
I=2% X, {012+ (X, +X,)21 4}

W

6000 [1b]

1|y
T %

I

A p
14{in]

—

[~

Fig.1. (b) Scheme of welded beam problem

The third problem formulated below is a disc brake
design problem minimizing mass of the brake and stopping
time subject to five constraints on the minimum distance
between radii, the maximum length of brake, pressure,
temperature and torque limitations (Fig.1 (c)). Meanwhile
variables are inner radius of discs x, outer radius of discs xo,
engaging force x; and number of friction surfaces xs4. Here,
we set weights at (0.8, 0.2) and e-constraint as fi(x) =1,
respectively.

min {f,(x)=4.9-107 (x5 — x?)(x, +1),
f(X) ==9.82-10°(xF — X ) /(XsXa (X3 =)}
subject to
Xo —% —20 20
30-2.5(x, +1) 20
0.4— x5 1{3.14(x3 - x£)}>0
1.0-2.22-1073 x5 (X3 = %) /(x5 —x2)? >0
0.0266 x5 X, (X3 — x2) / (x2 = x?) —900>0
55< x, <80,75< x, < 110,
1000 < x5 < 3000, 2< X, < 20

oy dm— %,

11

RGN
o 1 i

Fig.1. (c) Scheme of disk brake problem

The fourth problem formulated below is a speed reducer
design problem for minimizing total volume and stress on
the shaft 1 subject to eleven constraints on various stresses,
distortion and some design specifications. Among the
variables, x1 — Xs denote width, module and number of teeth
of a toothed gear, respectively and the rests lengths (Xa, Xs)
and diameters of shaft (xe, X7 as shown in Fig.1 (d). This
case sets weights at (0.2, 0.8) and e-constraint as f1(x) =3000,
respectively.

shatt 1
L

bearings 2
TR0 7 shafi 2 !
2 |11¥ bearings 1

; \f I /|

Fig.1. (d) Scheme of speed reducer problem
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min {f,(x) = 0.7854 x,x5 (10x2/3+14.933x, — 43.0934)

—1.508x, (X + X2) +7.447 (x3 + x3) + 0.7854 (X, X& + Xsx2),

£ (X) =/ (745 X4 /%, /%5)? +1.69-107 / (0.1x2)}
subject to

X X3 X3 — 2720

X X5 X5 —379.5>0

XpXgXg —1.93x3 >0

X, X375 —1.93x3 >0

40-Xx,X3 20

12x, =%, 20

X, —5/X, 20

X4 —1.5%5 -1.9 20

X5 -1.1x; =1.920

1300 - f,(x) >0

110x3 — /(745 X4 /(x,%;)2 +1.575-10° >0
2.6<% <3.6, 0.7 <x, <0.8,17 < x5 <28,
7.3< X, X5 <8.3,2.9< x; <3.9,5.0<x, <5.5

Every problem was solved 11 independent runs with
different random seeds within several seconds. Then the
results were compared with the original NSGA-II and high

performance commercial solver LINGO (ver.13.0) in Table 2.

We know the enhanced method completely outperforms the
usual one and is almost comparable to LINGO that aims at
rigid optimization basically. This fact surely reveals the merit
of the proposed enhancement due to BPD.

TABLE II. EFFECT OF ENHANCEMENT USING BENCHMARKS
Benchmark Usual Enhanced LINGO
Two-bar | weighting®: 0.142880 0.142450 0.142433
truss £—const. 0.103530 0.099071 0.096154
Welded weighting 0.0374149 0.0359751 0.0359182
beam £—const. 0.0164310 0.0163178 0.0159952
Disk weighting 1.770252 1.769252 1.749935
brake £—const. 5.058774 5.037595 4.863250
Speed weighting 1155.47 1154.22 1154.22
reducer £—const. 697.806 697.781 697.771

¢ Objective value averaged over 11 trials,
d. Upper: weighting problem & Lower: &-constraint one

2) Real world car design problem

Recently, a benchmark problem has been published [12]
to facilitate to develop some efficient methods available for
real world multi-objective optimization. It is a simultaneous
design problem for three types of car structure whose outline
is described as follows.

The design objectives are fi(x): maximization of number
of common gauge (standard plate thickness) parts among
three car types and f2(x): minimization of total weight of the
three. The first goal comes from mass-customization to meet
a variety of customer demands while the second from
reducing cost and environmental burdens. On the other hand,
design constraints include crashworthiness in the four crash
modes (front 40% offset, full front, side and rear 70% offset
impact), torsional stiffness and natural frequency (lateral

0.5 fio f2)
D
i P by L
N ok e
z 04 010 207 AetT (f;, f2)=(41, 2.69)
g (i, 15) m._.)_)/‘
> B e lle=————— Bmm———— aFE
g 03 (fir /)=(39, 2.90)
Ei x A " previ
~————___ Previous concern -
o 02 (f,/)=(34,3.00) - -enhance
H (down size)
(o]
2 -
oy 0.1 & - usua
C > Imitial
0
0 50 100 150

Evaluation# [10* times]

Fig.2. Comparison of profiles along with evaluation time and attaining
points

bending, longitudinal bending and torsion) for each type.
Moreover, design variables (Xi, Xi+74, Xi+148), i=1,...,74 are the
gauge of parts of the three types.

After all, it is a large complicated bi-objective
optimization problem composed of 222 decision variables
and 54 constraints besides box constraints on the decision
variables. Actually, fi(x) is evaluated in terms of the relation
such that if max{xi, Xi+7a, Xi+148} —Min{Xi  Xi+74, Xi+1a8} < 0.05,
then part i is viewed as common thickness part and fa(x) is
described as multiple regression equation and the constraints
are as response surface models using RBF (Radial Basis
Function) interpolation.

By the adaptive scalarized method termed MOON?, this
problem was solved successfully thought the procedure
mentioned in the paragraph just before [Problem 5]. Then,
we revealed the result is much superior to the human
empirical decision [3].

Presently, we solved this problem by the proposed
enhanced procedure till much longer generation and
compared the convergence profiles and final achievements
with the previous results. As shown in Fig.2, the profile of
the enhanced method (Blue) changes nonlinearly along with
evaluation number while the usual one (Red) linearly and
slowly. The enhancement also works well for the downsizing
version since the profile (Green) is similar to the original one.
Eventually, the enhanced method is able to attain at the
higher plateaus (Point C, D) than the usual one (Point E).
They are better than the human decision (Point A) over 90%
in total evaluation (Vnn), the previous one (Point B) over
40% and usual one (Point E) over 35%. These results also
support the advantage of the proposed enhancement.

C. Post-optimal Evolution toward Rational Decision

We showed previously the post-optimal evolution can
improve the prior optimization [2]. Besides such small return,
we would like to emphasize its great role as the post-optimal
analysis that enables us to comprehensively re-consider the
prior result before the final decision. As a good example for
this purpose, we take a look at the foregoing speed reducer
design problem.

Looking at only the preferentially optimal solution
derived from the weighting method (left side of Fig.3), we
can not completely assure its adequateness due to the
indefinite weight setting. By virtue of the post-optimal
evolution (middle of Fig.3), we can imagine the shape of
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Fig.3. Utility of post-optimal evolution on speed reducer problem:
this is obtained under the condition such as popsz#=10,
gener#=500 and 3 elites (two best and one second best solutions
in the prior optimization).

Pareto front just around the prior solution (right side of
Fig.3). Then, we know the prior solution will stay unchanged
over the wide range of weight setting. In other word, this
solution is surely appropriate due to the robustness regarding
the weight set.

Such local multi-objective analysis, as it were, can repair
some shortcomings of the stiff scalarized methods and renew
them as more adaptive approaches. Moreover, only small
population is enough to perform that. Since these practical
but simple approaches are very attractive in real world
applications, we claim it can support many engineering
optimizations rationally.

V. CONCLUSION

Since MOEA s can reveal a clear trade-off relation among
the conflicting objectives effectively, they have been applied
conveniently in MOP. To expand such availability and to
enhance solution ability much more, this paper has
concerned with some deployments for coping with SOP and
some scalarized MOP. Actually, the original idea studied in
terms of NSGA-II has been compared with other popular
MOEAs to find out the more compatible methods. Then,
after revealing a special property of individual solution
regarding its rank, we have adopted non-Pareto optimal (best
performance) dominance in the previous framework.

In numerical experiments, first, we have compared the
performance among NSGA-1I, MODE and MOPSO through
a set of benchmarks. Then, using the best method among
them (NSGA-II), the merit of the enhancement due to the
new idea has been verified. Actually, multiple mechanical
designs problem and the real-world car structure design
problem given by the scalarized MOPs have been solved.
Moreover, the significance of the post-optimal evolution has
been emphasized especially for the scalarized MOPs. By
virtue of those demonstrations, we claim the proposed
framework can provide a practical procedure for rational
decision making through SOP and/or MOP.
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APPENDIX PROOF OF PROPOSITION 3

We select an arbitrary individual at arbitrary generation
and denote it as xP" and assume its rank is not 1. Then, there
exists a certain dominating individual such as xq at this
generation. It means that

f1(Xa) < f1(x"")

fa(Xq) < f2(XP")

Here from the definition, it holds
fa(Xa) = — f1(xg) and f(xP")= — f1(x*").

Then, we get a relation such that — fi(xq) < —f1(x*") from Eq.
(A-2). This comes to fi(xq) > fi(xP"). This contradicts with
Eq.(A-1). Hence, rank is 1 every where and every time.

(A1)
(A-2)
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