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Abstract— To resolve various difficult problems 
encountered in modern technologies, multi-objective 
evolutionary algorithms (MOEAs) have been studied 
aggressively in these decades.  Since they can reveal a clear 
trade-off relation among the conflicting objectives effectively, 
they are available for multi-objective optimization problem 
(MOP). To expand such availability more in advance, we 
previously proposed a novel idea for solving single-objective 
optimization problem (SOP) using MOEA and applied it to 
some methods by using scalarization in MOP (scalarized MOP, 
hereinafter). Actually, such idea was studied in terms of 
MOEA such as NSGA-II alone. Hence to find out more 
effective methods, this paper will first compare the 
performance with other popular MOEAs. Then, regarding the 
best method (NSGA-II, after all), we reveal a special property 
of the individual solution in population and develop a new idea 
on a basis of non-Pareto optimal (best performance) 
dominance to enhance the solution ability. In numerical 
experiments, first, we have compared the solution ability 
among NSGA-II, MODE and MOPSO through a set of 
benchmarks. Then, in terms of NSGA-II as the best method, 
scalarized MOPs have been solved to examine the merit of the 
new idea. They are four bi-objective mechanical design 
problems and a real-world car structure design. Moreover, the 
significance of the post-optimal evolution is emphasized 
especially for the scalarized MOPs. Through those 
demonstrations, we claim the proposed framework can provide 
a practical procedure for rational decision making through 
SOP and/or MOP. discuss some prospects towards the scalable 
cost accounting. 

Keywords— Optimization, Multi-Objective Evolutionary 

Algorithm, NSGA-II, Post-Optimal Evolution, scalarized Multi-
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I. INTRODUCTION

To resolve various difficult problems encountered in 
modern technologies, various optimization methods have 
been applied successfully in many years. Particularly, in a 
field known as multi-objective optimization, multi-objective 
evolutionary algorithms (MOEAs) have been studied 
aggressively in these decades. Since they are viewed as 
practical methods and can reveal a clear trade-off relation 
among the conflicting objectives (multi-objective analysis 
[1]) they are available for multi-objective optimization 
problem (MOP) that aims at obtaining a unique solution 
known as preferentially optimal solution. To expand such 
availability of MOEAs more in advance, we previously 
proposed a novel idea for solving single-objective 
optimization problem (SOP) using MOEA [2] and applied it 
to the real world optimization problem [3].  

Actually, such idea was studied in terms of MOEA such 
as NSGA-II alone. Hence to find out more effective methods, 
this paper will compare the previous performance with other 
popular MOEAs such as MODE (Multi-Objective 
Differential Evolution) and MOPSO (Multi-Objective 
Particle Swarm Optimization). In addition, after revealing a 
special property of individual solution in population, we will 
develop a new idea to enhance the solution ability for the 
best method (NSGA-II, after all). Actually, it relies on a 
basis of non-Pareto optimal (best performance) dominance in 
the foregoing framework.  

To compare the solution ability among MOEAs, in 
numerical experiments, we will solve a set of benchmark 
problems. Then, in terms of NSGA-II as the best method, 
scalarized MOPs have been solved to examine the enhanced 
merit of the new idea. First, four bi-objective mechanical 
design problems are concerned by the stiff value function 

methods (weighing and -constraint) and commercial solver 
LINGO [URL-1]. Then a real-world car structure design 
problem is solved by an adaptive approach termed MOON2 
(Multi-Objective Optimizer using value function modelled 
by Neural Network) [4].  

Moreover, we engage in the post-optimal evolution that 
is to be done for re-evaluating the prior optimization result 
before the final decision. Here, we emphasize its significance 
especially for the scalarized MOPs since they usually involve 
uncertain parameters referring to subjective preference of 
decision maker (DM).  

The rest of this paper is organized as follows. In Section 
2, problem statement is described clearly. Section 3 explains 
about the old and new ideas. In Section 4, examining 
solution ability through comparison with other MOEAs, we 
move on the bi-objective engineering design problems. Then, 
significance of the post-optimal evolution is discussed 
demonstratively. Some conclusions are given in Section 5. 

II. PROBLEM STATEMENTS

In general, SOP is formulated as [Problem 1]. 

[Problem 1] min f (x) subject to x ∈ X 

where x denotes a decision variable vector, X a feasible 
region and f a scalar objective function.  

Though many mathematical programming methods have 
been traditionally applied, in modern optimization, they are 
likely replaced with meta-heuristic methods. This is because 
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the latters can practically cope with various simulation 
models and expect to obtain a global solution without rigid 
mathematical conditions even for complicated problems. 

Meanwhile, MOP is formulated as follows. 

[Problem 2] min F(x) = {f1(x), f2(x), … fN(x)} 

subject to x ∈ X  

where F denotes a vector objective function some elements 
of which conflict with one another. The aim of MOP is to 
obtain a unique preferentially optimal solution relaying on  
the DM’s preference.  

As a widely used approach for MOP, certain scalarized 
methods have been utilized traditionally to many applications 
due to their simplicities [5]. The basic idea is to transform 
appropriately the original MOP into SOP. As its popular 
form, weighting method is formulated as follows.  

[Problem 3] min f(x) = i
 wi fi(x) subject to x ∈ X 

Another one known as  -constraint method is given by  

[Problem 4] min f(x) = fi(x) 

subject to  fj(x) ≦ fj-opt  + j , ∀j≠i and x ∈ X 

where wi denotes the weighting coefficient representing the 

relative importance of i-th objective and j the upper bound 
compromise from the optimal value fj-opt for j-th objective.   

Though those formulations are understandable, there 
exist no ways to decide such preference parameters like 

weights and  values beforehand correctly. That is an 
inherent weakness of those approaches. Hence, we call those 
stiff methods.  

To overcome such stiffness, we proposed an adaptive 
scalarized method named MOON2. It tries to identify the 
value function of DM through a suitable artificial neural 
network (NN) beforehand. Such NN will be trained using the 
training data gathered from DM by the AHP-like pair-wise 
comparisons on his/her preference. Through such elaborate 
assessment on the value system, we can transform the 
original MOP into SOP as follows.  

[Problem 5] max VNN(F(x)) subject to x ∈ X 

Here, noting the specific uncertain properties still 
embedded in MOP, we should note the importance of the 
post-optimal evolution pointed out already. For this purpose, 
we can apply the elite induced multi-objective evolutionary 
algorithm (EI-MOEA [6]) as follows. 

(1) Select some elite solutions around the prior solution. 

(2) Apply MOEA by incorporating the elite solutions into a 
set of random initial solutions. 

III. ENHANCEMENTS TO SOLVE SOP BY MOEA 

Previously, we noted the following propositions. 

Proposition 1: Objectives min f(x) and max f(x) always 
conflict with each other. 

Proposition 2:  “[Problem 6] min {f(x), − f(x)} subject to 

x ∊ X” is viewed as a bi-objective problem (minus 

formulation).  

Then, due to Proposition 2, we proposed a unique 
procedure to solve SOP or scalarized MOP by MOEA as 
follows (hereinafter, our approach). 

(1) Apply a certain MOEA for the above [Problem 6].  

(2) Select the solution with the minimum value of f(x) as the 
optimal solution for the original [Problem 1]. 

Regarding the approaches associated with this topic, a 
few ideas are proposed for the constrained SOP. The first one 
[7] proposed a scheme that transforms the original problem 
into an unconstrained bi-objective problem by considering a 
measure of the constraint violations as the second objective. 
Another one [8] tries to transform the problem into an 
unconstrained MOP having the original objective function 
and every constraint as separate objectives. In this case, the 
constrained SOP is converted into a MOP with N objectives 
when the number of constraints is N − 1.  

It should be noted, in these approaches, trade-off is to be 
considered between the optimality and the feasibility. Hence, 
it becomes quite hard to derive some promising feasible 
solutions efficiently if any particular operations would not be 
introduced in the algorithm. Accordingly, we cannot directly 
apply any conventional MOEAs to solve the problem. 
Moreover, the second approach refers likely to many-
objective problem that becomes more difficult to solve since 
numbers of constraint are large for practical real world 
applications.   

Against these defects, our above idea can cope both with 
the unconstrained and constrained SOP by just applying the 
usual MOEA. In other words, we can solve the original SOP 
even if we do not have any EA and mathematical 
programming solvers or certain knowledge about their usage. 

By the way, it is unnecessary to derive a widely spread 
distribution of Pareto front in our dealing. It is enough to 
obtain only several solutions. This is also true for the post-
optimal evolution carried out after that. To note these facts, 
we modified the algorithm of NSGA-II [9] so that the 
population size will decrease along with the generation. 
Pseudo code of such algorithm called down-sizing NSGA-II 
is given as follows. 

––––––––––––––––––––––––––  

    if(gen >α x gener) 

{  popsize = β x popsize; 

     if(popsize < minpop)  popsize = minpop; } 

–––––––––––––––––––––––––– 

where α and β are positive parameters (<1). And gen, gener, 
popsize and minpop represent current generation, its total one, 
population size and desired final size, respectively.   

Since we deployed those ideas and examined their effects 
only for NSGA-II, it is meaningful to compare the 
performance with the other popular MOEAs like MODE and 
MOPSO before considering enhancement. Then, for the best 
match of our idea among those, we try to enhance the 
algorithm by introducing a simple operation in terms of the 
following property,.  

Proposition 3: Rank of every individual is always 1 
when solving the unconstrained problem of [Problem 6]. 
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From this, for unconstrained problems, it becomes 
redundant to compute the rank every time. Moreover, we can 
avoid such a risk that the individuals having smaller 
objective value f(x) are not selected if usual Pareto optimum 
dominance would be applied. This is because when the 
ranking is tie, the selection is to be done in terms of another 
basis such as crowding distance. Hence, it is better to adopt a 
non-Pareto optimum dominance to enhance the solution 
ability in the present case. What we call here the best 
performance dominance (BPD) is defined as follows: 

Individual xi dominates xj if f(xi) < f(xj) 

As a matter of fact, the above proposition is not satisfied 
for the constrained problems that are obeyed by  the 
constrained dominance that is defined as follows. 

Individual xi dominates xj, 

(1) if xi is feasible while j infeasible 

(2) if xi has smaller vioration amount than xj when both are 
infeasible 

(3) due to the Pareto optimum dominance when both are 
feasible 

In this case, we can apply BPD only for the above Case 
(3). Hence, though the rank of every individual is always 1 in 
unconstrained problems, there are several ranks during the 
evolution in constrained ones. Moreover, as a subsidary 
effect, computational effort is saved by this BPD in any case. 

As a summary of this section, we repeat the significance 
of the proposed idea as follows. Just by an appropriate 
MOEA, we can cope with a variety of interests in 
engineering optimization regardless whether it is given as 
SOP or MOP. In this line, the proposed idea is promising to 
expand the availability and performance of MOEA greatly. 

IV. NUMERICAL EXPERIMENT 

A. Comparison among MOEAs 

 Previously, to evaluate the solution ability, we solved ten 
benchmark problems many of which have multiple peaks of 
objective functions. Actually, we applied our idea in terms of 
NSGA-II and compared its performance to several methods, 
i.e., a direct search known as N-M (Nelder & Mead) and four 
evolutionary methods such as DE (Differentially Evolution), 
PSO (Particle Swarm Optimization), GA (Genetic 
Algorithm) and SA (Simulated Annealing). Then, we 
revealed the total performance of our procedure is third place 
a bit behind DE and PSO but satisfactory as a global solver 
even for SOP. 

Here, to find more effective methods, we compare the 
foregoing performance with the other MOEAs such as 
MODE and MOPSO. For this purpose, we used the codes 
named nsga2, MOPSOCD [10] in the R library and 
transformed R code from MODE.m in Matlab [URL-2] 
under the default parameter settings. MOPSOCD uses 
crowding distance computation to ensure even spread of non-
dominated solutions while MODE applies the greedy 
selection using a dominance relation. 

Every problem was solved 31 independent runs with 
different random seeds under the conditions for the 
population size (popsz#) and the generation time (gener#) as 
follows: popsz# = min (10D, 60) and gener# = 
min(100*popsz0.7, 2000), respectively. Here, D denotes the 
dimension of decision variables. In Table 1, those results are 
summarized regarding the average objective value and 
Success# defined below the table. We know MODE did not 
go well with our approach at all and MOPSOCD did not so 
well. Since NSGA-II is known to be the best match, we 
continue to use this method for the following evaluations. 

B. Effect of Enhancements for Constrained Problems 

1) Engineering problems 
In this section, we turn our attention to examine the 

efficiency and applicability of our approach (refer to 
Propositions 2 & 3) in terms of the four engineering 
problems studied elsewhere (Refer to Ref.[11] more in 
detail,). They are all bi-objective constrained minimization 
problems. Actually, we solved those as the stiff scalarized 
problems given by [Problem 3] and [Problem 4] under the 
"minus" formulation. This time, we used the open C code of 
NSGA-II developed by Deb [URL-3] with the parameter 
settings such as crossover probability and distribution index: 
0.75 & 10, respectively and mutation probability and 
distribution index: 0.2 & 50, respectively. On the other hand, 
population size and generation number are set as popsz# 
=10D and gener# =10popsz#, respectively 

The first problem formulated below is a two-bar truss 
design problem minimizing total volume of bars and stress 
on bar AC subject to three constraints on stress and volume 
with respect to the variables (x1 – x3) as shown in Fig.1 (a). 
Here, two kinds of stiff scalarized problem were solved with 

weights of (0.5, 0.5) and under -constraint like f1(x) ≦ 0.2, 
respectively. 

TABLE I.  COMPARISON AMONG MOEAS USING BENCHMARKS 

Benchmark MODE MOPSO NSGA-II 

Shekel's fox hole: 

 fopt = 0.998004 

128.394 a. 

0% (0) b.  

54.3947  

68% (21) 

0.998003 

100% (31) 

Schwefel: 

 fopt = 0.0 

326.482  

0% (0) 

84.6800  

0% (0) 

34.3863 

71% (22) 

De Jong: 

 fopt = 3905.93 

3909.47  

100% (31) 

3905.96  

100% (31) 

3905.93  

100% (31) 

Goldstein & Price: 

fopt = 3.0 

81.8914  

0% (0) 

4.20729  

6% (2) 

3.00706  

97% (30) 

Branin: 

 fopt = 0.397727 

2.86889  

0% (0) 

0.414448  

32% (10) 

0.474839 

97% (30) 

Martin & Gaddy:  

fopt = 0.0 

0.702028  

0% (0) 

2.95844E-3 

84% (26) 

5.63677E-5 

100% (31) 

Rosenbrock: 

 fopt = 0.0 

3.54863  

0% (0) 

0.0321421 

23% (7) 

7.99531E-3 

68% (21) 

4D-Rosenbrock:  

fopt = 0.0 

83.8490  

0% (0) 

3.62872  

0% (0) 

1.18818  

3% (1) 

Hyper sphere: 

 fopt =  0.0 

18.6844  

0% (0) 

0.930556  

0% (0) 

7.59519 E-4 

100% (31) 

Griewangk:  

fopt = 0.0 

0.936496  

0% (0) 

0.0127924  

23% (7) 

0.0107789  

32% (10) 

Total score 10% (31) 34% (104) 77% (238) 

a. Objective value averaged over 31 trials,  

b. % (Success#), where Success#  = +1 if ( |fopt - f(x)| < 0.01*(1.0 + | fopt |) ) 
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The second problem formulated below is to minimize 
cost and end deflection for a welded beam subject to four 
constraints on shear stress, bending stress and buckling load. 
Meanwhile, variables (x1 – x4) are lengths as shown in Fig.1 

(b). In this case, weights are (0.00025, 0.99975) and -
constraint is f1(x) ≦10, respectively. 
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The third problem formulated below is a disc brake 
design problem minimizing mass of the brake and stopping 
time subject to five constraints on the minimum distance 
between radii, the maximum length of brake, pressure, 
temperature and torque limitations (Fig.1 (c)). Meanwhile 
variables are inner radius of discs x1, outer radius of discs x2, 
engaging force x3 and number of friction surfaces x4. Here, 

we set weights at (0.8, 0.2) and -constraint as f1(x) ≦1, 
respectively.  
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The fourth problem formulated below is a speed reducer 
design problem for minimizing total volume and stress on 
the shaft 1 subject to eleven constraints on various stresses, 
distortion and some design specifications. Among the 
variables, x1 – x3 denote width, module and number of teeth 
of a toothed gear, respectively and the rests lengths (x4, x5) 
and diameters of shaft (x6, x7) as shown in Fig.1 (d). This 

case sets weights at (0.2, 0.8) and -constraint as f1(x) ≦3000, 
respectively. 

 

 

 

 

Fig.1. (b) Scheme of welded beam problem  

 

 

 

Fig. 1. (a) Scheme of two-bar truss problem  

 

 

 

Fig.1. (c) Scheme of disk brake problem 

 

 

Fig.1. (d) Scheme of speed reducer problem  
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Every problem was solved 11 independent runs with 
different random seeds within several seconds. Then the 
results were compared with the original NSGA-II and high 
performance commercial solver LINGO (ver.13.0) in Table 2. 
We know the enhanced method completely outperforms the 
usual one and is almost comparable to LINGO that aims at 
rigid optimization basically. This fact surely reveals the merit 
of the proposed enhancement due to BPD. 

 

2)  Real world car design problem 
Recently, a benchmark problem has been published [12]  

to facilitate to develop some efficient methods available for 
real world multi-objective optimization. It is a simultaneous 
design problem for three types of car structure whose outline 
is described as follows.  

The design objectives are f1(x): maximization of number 
of common gauge (standard plate thickness) parts among 
three car types and f2(x): minimization of total weight of the 
three. The first goal comes from mass-customization to meet 
a variety of customer demands while the second from 
reducing cost and environmental burdens. On the other hand, 
design constraints include crashworthiness in the four crash 
modes (front 40% offset, full front, side and rear 70% offset 
impact), torsional stiffness and natural frequency (lateral 

bending, longitudinal bending and torsion) for each type. 
Moreover, design variables (xi , xi+74, xi+148), i=1,…,74 are the 
gauge of parts of the three types.  

After all, it is a large complicated bi-objective 
optimization problem composed of 222 decision variables 
and 54 constraints besides box constraints on the decision 
variables. Actually, f1(x)  is evaluated in terms of the relation 
such that if max{xi , xi+74, xi+148} – min{xi , xi+74, xi+148} < 0.05, 
then part i is viewed as common thickness part and f2(x)  is 
described as multiple regression equation and the constraints 
are as response surface models using RBF (Radial Basis 
Function) interpolation.  

By the adaptive scalarized method termed MOON2, this 
problem was solved successfully thought the procedure 
mentioned in the paragraph just before [Problem 5]. Then, 
we revealed the result is much superior to the human 
empirical decision [3].  

Presently, we solved this problem by the proposed 
enhanced procedure till much longer generation and 
compared the convergence profiles and final achievements 
with the previous results. As shown in Fig.2, the profile of 
the enhanced method (Blue) changes nonlinearly along with 
evaluation number while the usual one (Red) linearly and 
slowly. The enhancement also works well for the downsizing 
version since the profile (Green) is similar to the original one. 
Eventually, the enhanced method is able to attain at the 
higher plateaus (Point C, D) than the usual one (Point E). 
They are better than the human decision (Point A) over 90% 
in total evaluation (VNN), the previous one (Point B) over 
40% and usual one (Point E) over 35%. These results also 
support the advantage of the proposed enhancement. 

C. Post-optimal Evolution toward Rational Decision 

We showed previously the post-optimal evolution can 
improve the prior optimization [2]. Besides such small return, 
we would like to emphasize its great role as the post-optimal 
analysis that enables us to comprehensively re-consider the 
prior result before the final decision.  As a good example for 
this purpose, we take a look at the foregoing speed reducer 
design problem.  

Looking at only the preferentially optimal solution 
derived from the weighting method (left side of Fig.3), we 
can not completely assure its adequateness due to the 
indefinite weight setting. By virtue of the post-optimal 
evolution (middle of Fig.3), we can imagine the shape of 

TABLE II.  EFFECT OF ENHANCEMENT USING BENCHMARKS 

Benchmark Usual Enhanced LINGO 

Two-bar 

truss  

weightingd. 

−const. 

0.142880 

0.103530 

0.142450 

0.099071 

0.142433 

0.096154 

Welded 

beam  

weighting 

−const. 

0.0374149 

0.0164310 

0.0359751 

0.0163178 

0.0359182 

0.0159952 

Disk 

brake 

weighting 

−const. 

1.770252 

5.058774 

1.769252 

5.037595 

1.749935 

4.863250 

Speed 

reducer 

weighting 

−const. 

1155.47 

697.806 

1154.22 

697.781 

1154.22 

697.771 
c. Objective value averaged over 11 trials,  

d. Upper: weighting problem & Lower:  -constraint one 

Fig.2. Comparison of profiles along with evaluation time and attaining 

points 

 

77



Pareto front just around the prior solution (right side of 
Fig.3). Then, we know the prior solution will stay unchanged 
over the wide range of weight setting. In other word, this 
solution is surely appropriate due to the robustness regarding 
the weight set.  

Such local multi-objective analysis, as it were, can repair 
some shortcomings of the stiff scalarized methods and renew 
them as more adaptive approaches. Moreover, only small 
population is enough to perform that. Since these practical 
but simple approaches are very attractive in real world 
applications, we claim it can support many engineering 
optimizations rationally. 

V. CONCLUSION 

Since MOEAs can reveal a clear trade-off relation among 
the conflicting objectives effectively, they have been applied 
conveniently in MOP. To expand such availability and to 
enhance solution ability much more, this paper has 
concerned with some deployments for coping with SOP and 
some scalarized MOP. Actually, the original idea studied in 
terms of NSGA-II has been compared with other popular 
MOEAs to find out the more compatible methods. Then, 
after revealing a special property of  individual solution 
regarding its rank, we have adopted non-Pareto optimal (best 
performance) dominance in the previous framework.  

In numerical experiments, first, we have compared the 
performance among NSGA-II, MODE and MOPSO through 
a set of benchmarks. Then, using the best method among 
them (NSGA-II), the merit of the enhancement due to the 
new idea has been verified. Actually, multiple mechanical 
designs problem and the real-world car structure design 
problem given by the scalarized MOPs have been solved. 
Moreover, the significance of the post-optimal evolution has 
been emphasized especially for the scalarized MOPs. By 
virtue of those demonstrations, we claim the proposed 
framework can provide a practical procedure for rational 
decision making through SOP and/or MOP. 

ACKNOWLEDGMENT  

A part of this research was supported by Grant-in-Aid for 
Research of JSPS, 17K01250 

APPENDIX  PROOF OF PROPOSITION 3 

We select an arbitrary individual at arbitrary generation 
and denote it as xp* and assume its rank is not 1. Then, there 
exists a certain dominating individual such as xd at this 
generation. It means that  

f1(xd) < f1(xp*)      (A-1)  

f2(xd) < f2(xp*)      (A-2) 

Here from the definition, it holds  

f2(xd) = – f1(xd) and f2(xp*)= – f1(xp*).  

Then, we get a relation such that – f1(xd) < –f1(xp*) from Eq. 
(A-2).  This comes to f1(xd) > f1(xp*). This contradicts with 
Eq.(A-1). Hence, rank is 1 every where and every time. 
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Fig.3. Utility of post-optimal evolution on speed reducer problem: 

this is obtained under the condition such as popsz#=10, 

gener#=500 and 3 elites (two best and one second best solutions 

in the prior optimization). 
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